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Introduction 

A centerpiece of restoring and protecting coastal ecosystems lies in determining how best to inventory resources and 
monitor trends.  Multispectral remote sensing is often considered for mapping vegetation and other habitat 
characteristics because it provides a synoptic snapshot that can be classified according to spectral properties.  
Remote sensing technologies has been applied extensively in forested and agricultural environments.  However, the 
coastal fringe poses a unique set of environmental and technical considerations. 
 
Environmental considerations such as tidal height, cloud cover and vegetation patch size often limit the utility of 
conventional satellite-based sensors such as LANDSAT TM and SPOT.  Additionally, satellite sensor bandsets are 
not optimized for differentiating marine vegetation.  In contrast, airborne sensors can capture high resolution data at 
times of low tide and minimal cloud cover.  The Compact Airborne Spectrographic Imager (CASI) sensor has been 
identified through marine mapping projects as a preferred method for marine vegetation census (e.g., Mumby et al. 
1997).  CASI can be deployed from a small plane, and its bandset can be programmed to differentiate features of 
interest.  It has been used primarily in small study areas.  While many studies differentiate vegetation types, other 
research suggests that it is difficult to consistently distinguish the spectra of different species. 
 
This project reviewed research to date and identified the optimal multispectral methods for mapping marine 
vegetation over hundreds of miles in a temperate environment.  We then applied the methods to map shoreline 
vegetation in Puget Sound.  In contrast to previous research, this project focused on management applications of 
multispectral remote sensing.  It tested the ability of the methods to produce an inventory of multiple vegetation 
types over a large area.    
 

Methods 
The Nearshore Habitat Group used CASI sensor data to classify 340 miles of shoreline vegetation during two 
successive inventory projects in 1995 and 1996.  This paper summarizes methods and results for the 1996 data set. 
For a full discussion of methods and results, see Berry & Ritter (1997) and Ritter and Berry (1999). 
 
Classification Categories   



Eight nearshore vegetation types were identified for multispectral classification:  eelgrass, brown algae, kelp, green 
algae, mixed algae, salt marsh, spit and berm vegetation, and red algae. These vegetation types encompass most 
common macroscopic vegetation found along Puget Sound=s shorelines. The vegetation types were selected largely 
by spectral discrimination considerations (Aitken et al., February 1995).   
 
Resource management priorities led to the selection of some vegetation classes despite discrimination difficulties 
(e.g., Washington Administrative Code (WAC) 220-110-250; WAC 365-190-080; DNR POL-0300; Wyllie-
Echeverria et al., 1994).  Kelp and other brown algae have similar dominant pigments and often a similar spectral 
signature. However, the inventory needed to differentiate kelp from other brown algae because of its recognized 
ecological function (e.g., Dayton, 1985; Wheeler, 1990).  Although both green algae and eelgrass contain 
chlorophyll a and b and have a similar spectral profile, the functional importance of eelgrass habitat required that 
they be differentiated (e.g., Phillips, 1984). Green algae can be an indicator of other processes such as 
eutrophication.  Salt marsh and spit or berm communities are often narrow and obscured by overhanging vegetation, 
making discrimination difficult. Despite spectral and spatial discrimination challenges, the salt marsh, and spit or 
berm categories were included due to the recognized functional importance of wetlands (e.g., Seliskar & Gallager, 
1983), and because habitats at the land-water interface tend to be impacted highly by development. 
 
Field Data Collection 
Field data were collected for two purposes: (1) to guide the image classification process, or (2) to assess 
classification accuracy.   Field data were collected throughout the study area when tides were below +1.0 mean 
lower low water (MLLW), between June and September in 1996 and 1997. The minimum mapping unit (MMU) was 
approximately 13 feet (4 meters).  
 
Field data were collected by boat or on foot. Field sites that had a total vegetation cover greater than 25 percent were 
recorded as vegetated sites. Vegetation class assignments were based on the dominant vegetation category at a site, 
i.e., the vegetation class comprising  75 percent or more of the vegetated area. Information on vegetated sites were 
located by either differentially corrected Global Position System, or annotated aerial photographs with transparent 
overlays.  Sites were represented as points, lines, or polygons depending on patch shape and location. 
 
Imagery Acquisition 
Digital CASI imagery and simultaneously collected color infrared photography (at 1:11,000 scale) were acquired by 
Borstad Associates. The instrument was operating in spatial mode, programmed with a custom, 11-channel bandset 
optimized to differentiate nearshore temperate vegetation (Borstad, 1996).   
 
The CASI system was mounted in a Cessna T210 aircraft. All flight lines were flown at a 10,800' altitude, from 
south to north, with 50% sidelap between adjacent flight lines. Flying in a consistent direction reduced radiometric 
discrepancies due to sun angle and sensor viewing angle. Image acquisition dates were selected based on maximum 
intertidal exposure (minus 1.0 foot mean lower low water or below), and times when sun angle would reduce sun-
glint. Imagery was acquired at an approximately 169 square feet (16 square meters) spatial resolution on July 14, 15, 
and 30, 1996 during low tides. 
 
Image Processing and Analysis 
Imagery was adjusted to surface radiance by applying an atmosphere correction, corrected for roll, pitch and yaw 
and projected into geographic coordinates using DGPS data to yield 169 square feet (16 square meters) pixels 
(Borstad, 1997). The resulting imagery was warped to fit DNR's orthophotos and coastline vectors. The rectified 
flight lines were mosaicked into eight, non-overlapping blocks, requiring 1174.1 MB of disk space. 



 
The imagery was classified using Imagine 8.3 software (ERDAS, Inc., Atlanta, GA) on a Sun workstation (Sun 
Microsystems, Inc., Mountain View, CA). Classified files were produced using an iterative, hybrid approach to 
classification, combining unsupervised and supervised methods. The supervised processing relied on the field data 
(e.g., DGPS-located sites and annotated photography) to develop training signature sets. 
 
Classification Accuracy Assessment 
Classification accuracy was assessed by comparing the classified image to a set of field sites (reference data) that 
had not been available to the image analysts during classification. Approximately one-third of all field sites were 
assigned as reference data for accuracy assessment. Reference data were chosen so they were a representative subset 
of all field sites, spread throughout the study area. Because assessment sites included line and polygon features 
composed of multiple pixels, establishing 'correctness' was not always a >all or none= decision. Sites that were 34%-
66% correctly classified received partial credit. 
 
Generalization & Conversion 
The classified raster image was converted to vector format to facilitate use in ArcView.  Data generalization was 
used to reduce the number of features and vertices in the coverage to a manageable number. The objective of the 
generalization was to simplify the coverage while maintaining the salient characteristics of vegetation features at an 
appropriate scale. A series of evaluation criteria were applied to significantly decrease the number of features and 
vertices, while minimizing associated changes in total acreage and in the visual appearance of the data. 
 

Results and Discussion 
A total of 230 miles of shoreline were mapped in 1996.The imagery was rectified to within +/-3 pixels 
(approximately 40 feet) in most parts of the imagery.  Eelgrass was the most common type of vegetation by acreage. 
 The majority of eelgrass is found in two extensive shallow embayments, Padilla Bay and Samish Bay. Green algae 
was the second most common vegetation type, followed by salt marsh, brown algae, kelp, spit or berm vegetation, 
and red algae. 
 
Classification Accuracy 
Overall accuracy for the classified image was 86.4%. Classification accuracy for each land cover type was analyzed 
using producers and user=s accuracy estimates (Table 1). Producer's accuracy is the probability of a reference site 
being correctly classified, i.e., a measure of omission error. It is the number of sites correctly classified as a land 
cover divided by the total number of reference sites for that land cover. User's accuracy indicates reliability, or the 
probability that a site classified on the image is really that land cover type on the ground. It is the number of sites 
correctly classified as a land cover divided by the total number of sites classified in that category (Congalton, 1991). 

 
Table 1. Producer's and User's Classification Accuracy Percentages  

by Land Cover Type for the Skagit County Study Area.  
Classification Accuracy  

Land Cover 
 

Producer's % 
 

User's % 
brown algae 78 87 
green algae 75 87 
kelp 96 95 
mixed algae 83 79 
eelgrass 84 91 
salt marsh 96 94 
spit or berm 74 99 
unvegetated 100  72 



 
Accuracy rates for individual vegetation types are encouraging with respect to prospective data set uses. Eelgrass, 
kelp and salt marsh vegetation, which are important to land-use related decision making, had generally high accuracy 
rates. For most of the vegetation types, the User's Accuracy was higher than the Producer's Accuracy, pointing to a 
trend of omitting a vegetation feature from the classification (an omission error), rather than confusing it with 
something else (a commission error). Multiple factors may have contributed to the pattern of higher omission error. 
The analyst=s training signatures used in the statistically-based classifier may not have represented the population. 
The percent cover threshold for a vegetated site (25 percent or greater) may have been too low at the lower limit for 
consistent detection. Temporal changes in vegetation could have occurred between the time at which the field data 
were collected and the time at which the multispectral imagery was collected. 
 
Some accuracy rates reflect weaknesses in the methodology with respect to specific land cover types. Unvegetated 
areas had the highest Producer=s Accuracy and the lowest User=s Accuracy rates. We attributed the high 
Producer=s Accuracy to the capability of the method to correctly identify the completely unvegetated field sites. The 
low User=s Accuracy rate results from the frequent classification of portions of vegetated field sites that are 
transitional or have low densities of vegetation as unvegetated.  
 
Spit or berm vegetation had the highest User=s Accuracy and the lowest Producer=s Accuracy rates. This vegetation 
type was most often incorrectly classified as unvegetated, and also mis-classified as other various vegetation types. 
This result reflects the inherent weakness of current methods to detect spit or berm vegetation. Spit or berm 
vegetation is commonly a narrow linear feature with low vegetative density, and often obscured by overhanging 
vegetation. Other vegetation types were rarely classified as spit or berm vegetation, leading to a high user=s 
accuracy. 
 
Mixed algae had relatively low Producer=s and User=s Accuracy rates. Confusion between mixed algae and other 
vegetation types was expected, given that mixed algae is a combination of multiple vegetation types. Mis-
classification could have been due to differences in the relative contribution of vegetation types to the overall 
spectral signature or to temporal changes in species composition. Despite these discrimination difficulties, the mixed 
algae category is important to describe the common phenomenon of varying species composition in a manner that 
keeps the number of classification categories tractable.  
 
Green algae had a low Producer=s Accuracy rate. We attribute this to the relatively ephemeral character of green 
algae in comparison to the other vegetation types.  Green algae commonly grows intermixed with eelgrass, in these 
cases the areas were classified as eelgrass because eelgrass is the more persistent vegetation and is protected by 
regulation.  
 
Salt marsh and spit and berm vegetation communities are separable from the macroalgae and eelgrass mainly 
because they contain emergent vegetation and the spectral signatures more closely resemble terrestrial vegetation 
(Aitken et al., June 1995). Intertidal zonation is another important spatial cue, since these vegetation types occur in 
the upper intertidal and supratidal zones. To differentiate salt marsh and spit and berm communities from other 
terrestrial vegetation, the upland areas of non-interest were masked.  
 
Detecting submerged vegetation was difficult. Spectral discrimination of submerged vegetation is influenced by a 
number of environmental conditions such as, water depth, surface roughness, water clarity and bottom type. Water 
attenuates the spectral response of submerged features. The longer wavelengths, e.g., near infrared, are absorbed in a 
few tenths of a meter of water (Lillesand and Kiefer, 1994). The water clarity and surface conditions of Puget Sound 
further hampers identification. Although the submerged feature is apparently vegetation, the vegetation type is not 
evident.  
 



Field Data 
Approximately 1,500 field data sites were collected during 30 days of field work.  We found the photo annotation to 
be the preferred method because it was the most rapid to collect, and it was robust to positional accuracy issues in 
the imagery.  Some field sites had to be disqualified because they did not meet the minimum mapping unit, the 
vegetation was obscurred, or seasonal changes in vegetation type were possible given the date of field data 
collection. 
 
Data Generalization and Conversion 
A variety of data generalization techniques were evaluated.  After considering the impacts of different alternatives 
on total acreage and on visual appearance, features with an area fewer than four pixels (approximately 680 square 
feet) were eliminated. The elimination changed the total area by less than 5 percent, and decreased the total number 
of features by 58%. In determining the size of features to eliminate, the effect of elimination on visual appearance 
turned out to be more important than the effect on total vegetation area because the size distribution of vegetation 
features was weighted towards the small class sizes. While the generalization did not significantly affect the areal 
extent of vegetation, it changed the frequency distribution of size classes. As a result, the visual appearance of the 
coverage could change markedly without a corresponding change in area. The narrow, linear vegetation features 
were most affected by area elimination thresholds. 
 

Conclusions 
Our program completed the first large area temperate vegetation mapping project that we know of using high 
resolution remote sensing methods.  Through designing an operational program, we learned much about the strengths 
and limitations of this methodology in Northwest shoreline environments. Fundamental lessons include: 
 
1.  The research question needs to drive the selection of methods.  We had two questions: What is the abundance, 
distribution and character of vegetation types?; and How are they changing over time?  CASI was successful at 
answering the first question.  The multispectral data set provides highly detailed information on resource abundance 
and distribution, higher than comparable photo-interpreted inventories. It differentiated vegetation types in intertidal 
and shallow subtidal areas with good patch detail. The total project costs impacted our use of the technology.  We 
have confined the use of multispectral technology to priority areas.  For synoptic mapping, we adopted less detailed, 
helicopter-based survey techniques.   
 
We concluded that multispectral data would be less successful at addressing our second question, change detection, 
because many of our vegetation types of interest extend into the subtidal zone beyond the water penetration 
capability of CASI.  We are using underwater technology to capture temporal trends in vegetation beds that extend 
into the subtidal zone.  While underwater remote sensing methods capture the subtidal extent of beds, upper 
intertidal vegetation is difficult to measure and total area covered may be smaller.  
 
2. Integrated expertise is essential to program success.  Environmental considerations and technical complexities 
made it essential for marine scientists, remote sensing specialists, and GIS staff to work together closely. This 
integrated group was able to evaluate the technical issues and their ramifications on the project as a whole.  We 
encountered technical issues and made trade offs during each phase of the project. 
 
3. Data distribution is important, and problematic.  In order to streamline distribution, data and supporting 
information were made available on CD-ROM in multiple digital formats.  Regardless, many potential users lacked 
the necessary equipment or training.  Distributing paper maps proved to be essential in order for many people to be 
able to use the information in land use planning. We are now planning a Web-based map server, this technology may 
provide the optimal distribution method for our program data to non-technical users.  
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